ORIGINAL RESEARCH

Serum Levels of Cytokines and IgE in Helminth-Infected Nigerian Pregnant Women and Children

Ganiyu Olatunbosun Arinola, PhD, Olajumoke Abimbola Morenikeji, PhD, Kazeem Sanjo Akinwande, MSc, Ayodele Olasoji Alade, MSc, Oluwakemi Olateru-Olagbegi, MSc, Ponnmile Emmanuel Alabi, MSc, Sheu Kadiri Rahamon, PhD
Ibadan, Nigeria

Abstract
BACKGROUND Helminth infection is an important health challenge. Because of modulation of the immune response toward T-helper 2 (Th2) cells, the immunologic interplay that manifest during the coexistence of helminth infection with other conditions is still poorly understood.

OBJECTIVE This study determined the pattern of alteration in selected cytokines and immunoglobulin E (IgE) in pregnant women, preschool aged children, and school-aged children with helminth infection compared with uninfected groups.

METHODS Seventeen pregnant women, 42 preschool-aged children, and 60 school-aged children with helminth infection (HI) were recruited into this study. They were matched with 21 pregnant women, 42 preschool-aged children, and 50 school-aged children without helminth infection (HN) who served as controls. Venous blood samples were collected from each participant and analyzed for serum levels of tumor necrosis factor α (TNF-α), interleukin-10 (IL-10), interleukin-8 (IL-8), interleukin-6 (IL-6), and IgE. Statistical analysis was done using the Student t test, and P < .05 was considered as statistically significant.

FINDINGS Only serum level of IgE was significantly elevated in HI pregnant women compared with HN pregnant women. In HI preschool- and school-aged children, serum levels of IL-8, IL-6, and IgE were significantly elevated compared with HN children. However, preschool- and school-aged children with HI had similar levels of serum TNF-α and IL-10 compared with their corresponding HN groups.

CONCLUSIONS It could be concluded that altered cytokines expression in children and pregnant women with helminth infection might have some implications on need for deworming programs to improve pregnancy outcomes and vaccine responses.

KEY WORDS children, cytokines, helminth infection, IgE, pregnant women

© 2015 The Authors. Published by Elsevier Inc. on behalf of Icahn School of Medicine at Mount Sinai. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION

Helminth infections are one of the most common chronic infections in countries with poor hygienic conditions.¹ Roundworm, whipworm, and hookworms are the main species that infect people of all ages, including pregnant women.²

About 2 billion people are infected with helminthes worldwide. People living in endemic areas often suffer from single to multiple infections of
several helminth species, thereby causing marked morbidity and disability.\(^1\)

Infection with helminthes have been reported to have profound immunomodulatory effects on the host as it can inhibit, alter and/or modify other ongoing immune responses.\(^3\)-\(^5\) During chronic helminth infection, there is increased production of cytokines such as interleukin-4 (IL-4) and interleukin-10 (IL-10) as well as increased activation and expansion of eosinophils, mast cells, basophils, and the antibody isotypes immunoglobulins G1 (IgG1), G4 (IgG4), and E (IgE).\(^6\)-\(^7\) This form of response clearly shows that there is a shift toward T-helper 2 (Th2) cells and anti-inflammatory immune response.

Pregnant women are among the groups vulnerable to helminth infection.\(^8\) During pregnancy, there is production of pregnancy-related hormones that modulate immunologic responses in different stages of pregnancy.\(^9\) This interplay was hypothesized to avoid damage to the fetus and to prevent spontaneous abortions.\(^10\),\(^11\) Cytokine expression during chronic helminth infection is similar to cytokine responses in the third trimester of pregnancy. There is an increased activity of Th2 cells and increased production of anti-inflammatory cytokines during pregnancy.\(^12\) In contrast, the activities of Th1 cells, inflammatory macrophages, and natural killer cells and production of inflammatory cytokines are reduced especially during the third trimester of pregnancy.\(^10\) Therefore, helminth infection during third trimester of pregnancy further favors a shift toward Th2 immune responses, thus increasing the susceptibility of pregnant women to infections that require Th1 immune response to control. Therefore, severity and susceptibility to intracellular pathogens are increased.\(^13\) For example, a report from Uganda\(^14\) found that there was a significant association between increased HIV viral load and infections with hookworm and *Trichuris* in HIV-infected pregnant women. The viral load was found to reduce in these women after treating with albendazole.

Pregnant women and children are groups of people mostly vaccinated because of the high burden of different infections in these groups of people from developing countries. It is therefore necessary to determine serum levels of representatives of Th1 and Th2 arms of immune response and IgE in these vulnerable groups. The outcome of this study will be implicated in the prediction of vaccine responses in pregnant women and children. This study was therefore carried out to determine the pattern of alteration in selected cytokines and IgE in pregnant women and children with helminth infection.

MATERIALS AND METHODS

Study Participants. The study center, participant selection, collection of stool specimens and examination for helminthes, and blood sample collection and storage have earlier been reported.\(^15\) Briefly, 245 pregnant women in their third trimester and 349 children were screened for helminth infection. Seventeen pregnant women, 42 preschool-aged children, and 60 school-aged children had helminth infection (HI) and they were matched with 21 pregnant women, 42 preschool-aged children, and 50 school-aged children without helminth infection (HN) who served as controls.

Informed Consent and Ethical Approval. Ethical approvals were obtained from the University of Ibadan/University College Hospital Joint Ethics Committee and the Oyo State Ministry of Health before the commencement of the study. Also, written informed consent or assent was obtained from each study participant or their parents.

Laboratory Analysis. Serum levels of TNF-\(\alpha\), IL-10, IL-8, IL-6, and IgE were determined as previously carried out\(^16\) using ELISA from Leinco Technologies (Fenton, MO), Invitrogen Corporation (Waltham, MA), Life Technologies, (Carlsbad, CA), and Assaypro (St. Charles, MO).

Statistical Analysis. The independent Student \(t\) test was used to assess the differences in means of the variables at \(P < .05\). All results are presented as mean ± standard deviation.

RESULTS

The prevalence and types of helminth infection among the study participants have earlier been reported.\(^15\)

As shown in Table 1, only serum level of IgE was significantly elevated in HI pregnant women compared with HN pregnant women. Serum levels of TNF-\(\alpha\), IL-8, and IL-6 were not significantly different in HI pregnant women compared with HN pregnant women. In HI preschool- and school-aged children, serum levels of IL-8, IL-6, and IgE were significantly elevated compared with their corresponding HN groups. However, preschool- and school-aged children with HI had
Serum Levels of Selected Cytokines and IgE in Pregnant Women, Preschool-Aged Children and School Aged Children With Helminth Infection (HI) and Without Helminth Infection (HN)

<table>
<thead>
<tr>
<th></th>
<th>Pregnant women</th>
<th></th>
<th>Preschool-aged children</th>
<th></th>
<th>School-aged children</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HN (n = 21)</td>
<td>HN (n = 10)</td>
<td>HN (n = 10)</td>
<td>HN (n = 12)</td>
<td>HN (n = 12)</td>
<td>HN (n = 12)</td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>100.00 ± 50.00</td>
<td>49.32 ± 12.42</td>
<td>49.05 ± 11.32</td>
<td>49.70 ± 11.45</td>
<td>49.70 ± 11.45</td>
<td>49.70 ± 11.45</td>
</tr>
<tr>
<td>IL-10 (ng/mL)</td>
<td>ND</td>
<td>0.10 ± 0.05</td>
<td>0.50 ± 0.14</td>
<td>0.23 ± 0.14</td>
<td>0.26 ± 0.20</td>
<td>0.26 ± 0.20</td>
</tr>
<tr>
<td>IL-8 (pg/mL)</td>
<td>22.00 ± 7.10</td>
<td>493.30 ± 266.40</td>
<td>562.90 ± 298.40</td>
<td>995.20 ± 334.20</td>
<td>995.20 ± 334.20</td>
<td>995.20 ± 334.20</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td>52.80 ± 39.60</td>
<td>8.66 ± 4.01</td>
<td>4.89 ± 2.36</td>
<td>16.56 ± 12.20</td>
<td>16.56 ± 12.20</td>
<td>16.56 ± 12.20</td>
</tr>
<tr>
<td>IgE (ng/mL)</td>
<td>581.52 ± 232.32</td>
<td>ND</td>
<td>1806.40 ± 222.40</td>
<td>3156.20 ± 388.70</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

* Significant at \(P < 0.05 \)

相似水平的血清TNF-α和IL-10在孕妇中与相应的HN组相比。

DISCUSSION

由于公共卫生条件差和儿童的个人卫生习惯，寄生虫感染在发展中国家仍然是一个重大健康挑战，影响学龄前儿童和孕妇。报告发现感染寄生虫的儿童和孕妇的免疫系统已经发生了显著的免疫调节作用，这些作用可以导致易感人群，如儿童和孕妇。

IL-6是一种多功能的、具有多效性的细胞因子，由不同的细胞产生。它在正常和抗炎相关的性质中起着重要作用。对寄生虫的免疫反应细胞，如单核巨噬细胞和淋巴细胞。IL-6被证明参与了炎症的调节，炎症的激活和细胞的差异化。IL-6在孕妇感染寄生虫的血清中水平显著升高。我们使用IL-6水平的显著升高来支持我们的观察，这一观察在儿童感染者中与孕妇观察结果一致。

IL-8是一种与炎症有关的细胞因子，可以吸引中性粒细胞、嗜酸细胞、嗜碱细胞以及淋巴细胞。IL-8是由Th2细胞在寄生虫感染中产生的。它的释放是通过巨噬细胞的刺激的。IL-8的显著升高可能与寄生虫感染有关，可能与寄生虫感染的强度有关。这种观察可能支持我们之前的观察。

Table 1. Serum Levels of Selected Cytokines and IgE in Pregnant Women, Preschool-Aged Children and School Aged Children With Helminth Infection (HI) and Without Helminth Infection (HN)

<table>
<thead>
<tr>
<th></th>
<th>TNF-α (pg/mL)</th>
<th>IL-10 (ng/mL)</th>
<th>IL-8 (pg/mL)</th>
<th>IL-6 (pg/mL)</th>
<th>IgE (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN (n = 21)</td>
<td>100.00 ± 50.00</td>
<td>ND</td>
<td>22.00 ± 7.10</td>
<td>52.80 ± 39.60</td>
<td>581.52 ± 232.32</td>
</tr>
<tr>
<td>HI (n = 17)</td>
<td>100.00 ± 60.00</td>
<td>ND</td>
<td>24.30 ± 3.50</td>
<td>57.80 ± 32.80</td>
<td>799.92 ± 231.84</td>
</tr>
<tr>
<td>(P)</td>
<td>1.000</td>
<td>NA</td>
<td>.198</td>
<td>.670</td>
<td>.006*</td>
</tr>
</tbody>
</table>

Preschool-aged children

<table>
<thead>
<tr>
<th></th>
<th>TNF-α (pg/mL)</th>
<th>IL-10 (ng/mL)</th>
<th>IL-8 (pg/mL)</th>
<th>IL-6 (pg/mL)</th>
<th>IgE (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN (n = 10)</td>
<td>49.32 ± 12.42</td>
<td>0.10 ± 0.05</td>
<td>493.30 ± 266.40</td>
<td>8.66 ± 4.01</td>
<td>ND</td>
</tr>
<tr>
<td>HI (n = 12)</td>
<td>45.64 ± 13.17</td>
<td>0.13 ± 0.08</td>
<td>966.90 ± 552.80</td>
<td>22.29 ± 17.03</td>
<td>ND</td>
</tr>
<tr>
<td>(P)</td>
<td>.510</td>
<td>.222</td>
<td>.022*</td>
<td>.018*</td>
<td>NA</td>
</tr>
</tbody>
</table>

School-aged children

<table>
<thead>
<tr>
<th></th>
<th>TNF-α (pg/mL)</th>
<th>IL-10 (ng/mL)</th>
<th>IL-8 (pg/mL)</th>
<th>IL-6 (pg/mL)</th>
<th>IgE (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN (n = 10)</td>
<td>44.05 ± 11.32</td>
<td>0.23 ± 0.14</td>
<td>562.90 ± 298.40</td>
<td>4.89 ± 2.36</td>
<td>1806.40 ± 222.40</td>
</tr>
<tr>
<td>HI (n = 12)</td>
<td>49.70 ± 11.45</td>
<td>0.26 ± 0.20</td>
<td>995.20 ± 334.20</td>
<td>16.56 ± 12.20</td>
<td>3156.20 ± 388.70</td>
</tr>
<tr>
<td>(P)</td>
<td>.225</td>
<td>.745</td>
<td>.002*</td>
<td>.006*</td>
<td>.000*</td>
</tr>
</tbody>
</table>
suggestion that the pregnant women with HI might have lower helminth antigen, thereby culminating in nonsignificant production of IL-8 and IL-6.

IL-10 is an anti-inflammatory cytokine that regulates the inflammatory process. It is produced by many different myeloid and lymphoid cells. During infection, more than 1 population of IL-10—producing cells are induced, resulting in inhibition of the activities of Th1 cells, natural killer cells, and macrophages.24 In allergic diseases, IL-10 is a down-modulatory factor that functions to induce modified Th2-cell phenotype.25 The observed elevated levels of IL-10 in preschool- and school-aged children are in line with the reports of Goddey et al.26 and Sanchez et al.27 This observed elevated IL-10 might be necessary to dampen excessive inflammation with a view to protecting host tissues. Experimental studies found that IL-10—deficient mice with helminth infection had high morbidity and mortality.28,29 This probably shows that IL-10 is important in controlling pathology associated with helminth infection.30 This IL-10 action, however, could facilitate host tolerance to helminth infection and cause immune hyporesponsiveness against chronic helminth infection.24,30 Thus, this allows the helminth to live for a long time (as long as 20 y as in the case of Schistosoma spp) if not treated.

Infection with helminthes has been found to be the most effective and reliable inducer of IgE responses. During helminth infection, total serum IgE levels may rise up to 100-fold.31,32 Our observed elevated IgE in both children and pregnant women with helminth infection are not surprising. Gebreegziabiher et al.33 and Arinola et al.16 reported elevated IgE levels in pregnant women and children with helminth infection. IgE performs an important role in the control of helminth infection. Because helminths are large parasites that cannot be engulfed by phagocytes, the prevailing Th2 cytokines milieu will induce the B cells to switch the immunoglobulin class. The IgE produced coats the helminth to enable tissue mast cells and circulating eosinophilin to bind via their IgE receptors leading to cascade of immunologic events resulting in the extracellular killing of parasite.34

CONCLUSIONS

The results from this study indicate that inflammatory cytokines (IL-8 and IL-6) were significantly raised in helminth-infected children but not in pregnant women with helminth infection. Therefore, infectious agents that require Th1 immune responses to control may thrive more in children infected with helminth compared with pregnant women with helminth infection. Also, vaccines that stimulate Th1 immune responses may not be effective in helminth–infected individuals, especially children. Insignificant differences in inflammatory cytokines (IL-6, IL-8, and TNF-α) in helminth-infected pregnant women compared with pregnant women without helminth infection might result in normal pregnancy outcomes in helminth-infected pregnant women. Therefore, altered cytokines and IgE production in helminth–infected individuals call for regular deworming program, especially for pregnant women and children.

REFERENCES

