Impact of an improved biomass stove on birth outcomes in rural Nepal: A cluster-randomized, step-wedge trial

Background: Low birthweight (LBW), preterm birth, and small-for-gestational-age (SGA) are strongly associated with morbidity and mortality in low-resource settings. Data on the impact of reducing particulate indoor air pollution from biomass stoves on adverse birth outcomes is lacking.

Methods: A cluster-randomized, step-wedge, community-based cookstove replacement trial was conducted in rural southern Nepal to estimate the impact on birth outcomes. Eligible households had at least one child < 36 months of age or a married woman 15-30 years of age. Prevalent pregnancies were enrolled at baseline and incident pregnancies were identified by visiting households every five weeks. Gestational age was based on date of last menstrual period ascertained during these visits. Households were surveilled for six months prior to a 12-month stepped-wedge introduction of an improved biomass stove with chimney (Envirofit Corp.), followed by an additional six months of surveillance. 2553 pregnancies were enrolled within 3376 households. As soon after delivery as possible, study workers visited the household to interview the woman and take infant anthropometric measurements. Outcomes were compared across different amounts of time a pregnant woman lived in a household with an improved cookstove. Household PM$_{2.5}$ was collected before and after stove installation.

Findings: Mean 20-hour PM$_{2.5}$ level was reduced from 1386 µg/m3 to 930 µg/m3. Mean birth weight and gestational age was 2627g (SD = 443) and 38.8 weeks (SD = 3.1), respectively, among those delivering prior to improved stove installation. 39% were LBW, 22% preterm, and 55% SGA among pregnancies with no exposure to improved stoves. There was no statistically significant difference or trends in adverse birth outcomes by increasing exposure to improved stoves during pregnancy.

Interpretation: PM$_{2.5}$ concentrations following installation of the improved stoves were still well above the WHO indoor air standard of 25 µg/m3. There was no evidence that installation of improved biomass stoves reduced adverse birth outcomes. This could be due to an inadequate improved stove design, stove stacking, or other sources of indoor air pollution. Trials to examine birth outcomes with better biomass stove designs or clean fuel are needed to establish whether further lowering of indoor air pollution improves birth outcomes.

Funding: National Institutes of Health, Thrasher Research Fund.

Abstract #: 2.004_PLA

Zoonotic enteric pathogens in Kisumu Kenya, a comparison of farmed and Lake Victoria Tilapia: A collaborative interprofessional One Health project

B. Keith1, K. Bagamian1, J. Bouland1, M. Charles1, S. Cheruiyot2, L. Lukorito3, M. Oyango2, R. Rheigans4; 1University of Florida (UF), College of Public Health, Department of Environmental and Global Health, Gainesville, FL, 2Great Lakes University of Kisu (GLUK), Tropical Institute of Community Health and Development in Africa, Kisu, Kenya

Background: Tilapia are among the main protein source around Lake Victoria, including Kisumu Kenya. Environmental pollutants of Lake Victoria include municipal untreated sewage, runoff, storm-water, and animal waste. We hypothesized that tilapia were contaminated with enteric zoonotic pathogens and we compared lake fish to locally farmed fish. We further wanted to see if certain parts of the fish were more likely to be contaminated.