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ABSTRACT
Background: Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has resulted in >554M cases and >6.3M deaths worldwide. The disease caused 
by SARS-CoV-2, COVID-19, has resulted in a broad range of clinical symptoms differing 
in severity. Initially, the elderly were identified as particularly susceptible to severe 
COVID-19, with children experiencing less severe disease. However, as new variants 
arise, the epidemiology of SARS-CoV-2 infection is changing, and the disease severity in 
children is increasing. While environmental impacts on COVID-19 have been described, 
the underlying mechanisms are poorly described. 

Objective: The Pacific Basin Consortium for Environment and Health (PBC) held meeting on 
September 16, 2021, to explore environmental impacts on infectious diseases, including 
COVID-19. 

Methods: The PBC is an international group of environmental scientists and those 
interested in health outcomes. The PBC met to present preliminary data and discuss the 
role of exposures to airborne pollutants in enhancing susceptibility to and severity of 
respiratory tract viral infections, including COVID-19. 

Findings: Analysis of the literature and data presented identified age as an important 
factor in vulnerability to air pollution and enhanced COVID-19 susceptibility and severity. 
Mechanisms involved in increasing severity of COVID-19 were discussed, and gaps in 
knowledge were identified.

Conclusions: Exposure to particulate matter (PM) pollution enhanced morbidity and 
mortality to COVID-19 in a pediatric population associated with induction of oxidative 
stress. In addition, free radicals present on PM can induce rapid changes in the viral genome 
that can lead to vaccine escape, altered host susceptibility, and viral pathogenicity. 
Nutritional antioxidant supplements have been shown to reduce the severity of viral 
infections, inhibit the inflammatory cytokine storm, and boost host immunity and may be 
of benefit in combating COVID-19.
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AGE AND SUSCEPTIBILITY TO SARS-COV-2 INFECTION
Children typically experience more mild symptoms of COVID-19 when compared to adults. There 
is a strong body of evidence that children are found to be less susceptible to SARS-CoV-2 infection 
with the original Wuhan isolate. The reasons for reduced SARS-CoV-2 symptoms and infection in 
children remain unclear and may be influenced by a multitude of factors, including differences 
in target cell susceptibility and innate immune responses [1]. Using primary nasal epithelial cells 
from children and adults, differentiated at an air-liquid interface (ALI) we showed that SARS-CoV-2 
(both the Wuhan isolate and the more recent Alpha variant) replicate to significantly lower titers 
in the nasal epithelial cells of children compared to those of adults [2]. This was associated with a 
heightened antiviral response to SARS-CoV-2 in the nasal epithelial cells of children. Importantly, 
influenza virus, a virus whose transmission is frequently associated with pediatric infections, 
replicated in both adult and pediatric nasal epithelial cells to comparable titers. We have expanded 
these data to show that the more recent Delta, but not Omicron variant also replicated less in 
children’s nasal cells [2]. Taken together, these data show that the nasal epithelium of children 
supports lower infection and replication of the earlier SARS-CoV-2 variants than the adult nasal 
epithelium. Why viral replication is increased in children with the more recent Omicron variants 
is not known, but it is consistent with the epidemiology showing an increased number of cases 
in children as these have become dominant [3]. Traffic-related air pollution exposure during 
childhood is associated with an increased risk of severe respiratory infections [4, 5]. However, the 
interplay between age, environment, and COVID-19 remains unclear. 

AREAS OF HIGH PARTICULATE POLLUTION AND COVID
As with other viruses, epidemiological data demonstrate a strong influence of environmental 
factors on the incidence of infection with SARS-CoV-2 and the severity of COVID-19. Areas with 
high particulate matter (PM) pollution have been associated with increased mortality, not only 
to SARS-CoV-1 but recently to SARS-CoV-2 [6, 7], compared to regions with lower air pollution. 
The air pollution index (API), which is a simplified way to describe air quality and incorporates 
carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide, and PM2.5 was used in this study; and 
a moderate API of 51–100 was associated with an 84% increased mortality risk. Long-term and 
historical exposure to elevated PM2.5 levels have also been associated with a significant increase in 
COVID mortality. Specifically, an increase of 1 µg/m3 in the long-term average PM2.5 level correlated 
with an 11% increase in the COVID mortality rate [7]. The increase in mortality was even greater 
among black individuals. These data are reviewed in more detail in a companion paper in this 
series [8].

Several theories exist to explain the role of PM in enhanced morbidity and mortality of COVID-19. 
The first is that PM acts as a carrier for the virus - hijacking a ride on airborne PM. This has been 
demonstrated with other pathogens, including bacteria, fungi, and viruses [9–12], and most 
recently demonstrated for SARS-CoV-2 [11, 13]. It has been further hypothesized that the hijacked 
particle could enhance viral persistence and respirability, allowing it access to the lower airways. 
While ambient sources of PM2.5 vary between locations, combustion and industrial emissions are 
the major producers, and PM2.5 from such sources typically are associated with environmentally 
persistent free radicals (EPFRs) [14, 15]. We further posit that the presence of EPFRs on PM can: 
1) damage the airways inducing an immunosuppressive pulmonary microenvironment as has 
been demonstrated with influenza [16–18]; 2) induce mutations in the viral genome, increasing 
infectivity and/or pathogenicity of the virus; and/or 3) oxidize surface molecules on the virus 
altering the ability of the immune system to recognize the virus (Figure 1).

The first two hypotheses were explored using well-differentiated human nasal epithelial cells 
cultured at ALI (Ethics approval: No.#UQ2017000520; HREC61894; UQ2020001742), and 
preliminary data presented demonstrates that exposure to moderate level of EPFRs impaired 
epithelial barrier and reduced mucus production. Decreasing mucus production removes part of 
the first-line defense of respiratory epithelial cells and would be expected to increase viral access 
to the cell surface receptors.
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Supernatants containing SARS-CoV-2 viral particles from these same ALI cultures were isolated, 
and genetic modifications were identified by sequencing. Significant increases in the number of 
nucleotide changes were observed from ALIs exposed to EPFRs (i.e., a 33% increase compared to 
control air-exposed ALIs) for as short as 24h. While changes were observed across the genome, 
the largest number of changes were observed in the S gene, which codes for the Spike protein, 
followed by the E gene, which codes the Envelope protein. Intriguingly, mutations were observed 
at the N-terminal domain (NTD) of the S1 subunit and at S1/S2 cleavage site (Figure 2). 

Figure 2 The SARS-CoV-2 NTD 
comprised multiple mutation at 
48 and 72h post EPFR exposure. 
Mutations are highlighted as 
yellow spheres.

Figure 1 Potential roles of EPFRs 
in enhancing viral morbidity 
and mortality.
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While the receptor binding domain of S1 mediates viral infection by binding to host ACE2 receptors 
and is recognized as the key target for neutralization antibodies, the target of NTD is still unknown 
[19]. Still, changes in the conformation of exposed NTD loops have been associated with increased 
infectivity [20].

Furthermore, many potential neutralizing antibodies targeting NTD have been identified [21, 22]. 
These NTD-targeting antibodies target supersite epitopes harbored at the most exposed region 
of NTD (spanning from amino acid position 24 to 333) and have been shown to neutralize SARS-
CoV-2 in vitro and in vivo [21, 23, 24]. Thus, our preliminary data suggest that exposure to EPFRs 
can alter viral infectivity and affect an immune escape. Considering the significance of pollution 
exposure-mediated viral respiratory diseases, we urge future studies to further investigate and 
empirically validate our current findings.

While it is generally recognized that alterations in the S protein could alter infectivity and impact 
host protection (both in terms of immune evasion and vaccine escape), the role of genetic 
alterations in the E protein is less understood. The E protein is important in viral assembly, budding, 
and pathogenesis via damage to epithelial tight junctions [25]; alterations here may thus be 
critical in altering morbidity.  

Oxidative stress plays an important role in environmental exposure and viral infections [26, 27]. 
When SARS-CoV-2 enters cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
is activated, resulting in increased mitochondrial reactive oxygen species (mtROS) [28] and EPFR 
exposure also increases mtROS [29]. Thus, excessive production of mtROS induced by air pollution 
may result in oxidative stress in epithelial cells, which might be one of the key mechanisms 
increasing severity of COVID-19.

Infections and environmental exposure can trigger cytokine secretion as a host defense 
[30]. Exaggerated secretion of cytokines by both airway epithelium and immune cells such 
as macrophages, T cells, and neutrophils can cause organ failure and increase the severity 
of COVID-19 [31]. Severe COVID-19 can include ‘cytokine storm syndrome’ because of 
uncontrolled immune responses [32]. Both EPFR exposure and SARS-CoV-2 infection increased 
the pro-inflammatory cytokine, tumour necrosis factor α (TNF-α) production [29, 33]. Massive 
accumulation of TNF-α can contribute to cytokine storm; acute lung injury, or acute respiratory 
distress syndrome [34, 35].

PM induces oxidative stress and inflammation, and this can further enhance SARS-CoV-2-induced 
inflammation resulting in reduced therapeutic efficiency [24]. Multiple nutritional antioxidant 
supplements have been shown to reduce the severity of viral infections, inhibit the inflammatory 
cytokine storm, and boost host immunity [36]. Thus, those nutritional compounds may benefit 
COVID-19 treatment. Several clinical trials for antioxidant treatment for COVID-19 have been 
conducted, and some of them are still ongoing [37]. Two doses of N-acetylcysteine (NAC), a 
well-known antioxidant, did not decrease COVID-19 severity [38]; but a mixture of methylene 
blue, Vitamin C and NAC treatment increased the survival rate in severe COVID-19 patients [35]. 
Single antioxidant agents have not shown promising results in clinical trials. Alternative agents 
with better antioxidant capacity or combinations of antioxidants might be a better option for 
treating COVID-19.

CONCLUSION
Direct evidence, in a human system, of the mechanisms by which environmental pollutants, 
including EPFRs increase susceptibility for respiratory tract viral infections, including COVID-19, 
is needed. Further, identification of methods to reduce pollutant-mediated susceptibility 
using readily available therapies will be of great benefit. The significance of some of the data 
presented comes from the potential to reduce susceptibility to respiratory tract viral infections 
in the billions of people globally who are exposed to EPFRs from combustion and industrial 
processes. Finally, it is anticipated that resulting data will be essential to guide policy related to 
future pandemics.
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ABBREVIATIONS
ALI – air-liquid interface

API – air pollution index

PM – Particulate Matter

EPFR – Environmentally persistent free radicals

NAC – N-acetylcysteine

ROS – reactive oxygen species

SARS-CoV-2 – severe acute respiratory syndrome coronavirus 2

TNF-α – tumour necrosis factor α
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